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Abstract

While neural net models have been developed to a high degree of sophistication, they have some drawbacks at a more integrative, “architectural”
level of analysis. We describe a “hybrid” cognitive architecture that is implementable in neuronal nets, and which has uniform brainlike features,
including activation-passing and highly distributed “codelets,” implementable as small-scale neural nets. Empirically, this cognitive architecture
accounts qualitatively for the data described by Baars’ Global Workspace Theory (GWT), and Franklin’s LIDA architecture, including state-
of-the-art models of conscious contents in action-planning, Baddeley-style Working Memory, and working models of episodic and semantic
longterm memory. These terms are defined both conceptually and empirically for the current theoretical domain. The resulting architecture meets
four desirable goals for a unified theory of cognition: practical workability, autonomous agency, a plausible role for conscious cognition, and
translatability into plausible neural terms. It also generates testable predictions, both empirical and computational.
c© 2007 Published by Elsevier Ltd
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1. Introduction

While neural net models have been developed to a high
degree of sophistication, they have some drawbacks at a
more integrative, “architectural” level of analysis. We describe
a “hybrid” cognitive architecture that is implementable in
neuronal nets, and which has uniform brainlike features,
including activation-passing and highly distributed “codelets,”
implementable as small-scale neural nets. This cognitive
architecture integrates Global Workspace Theory, as developed
by Baars (1988, 2002), and Franklin et al.’s LIDA model
(Ramamurthy, Baars, D’Mello, & Franklin, 2006). Together,
they have theoretical and empirical implications for our
understanding of both conscious and unconscious human
cognition.

It is not possible to test all parameters of cognitive
architectures, which perform real cognitive activities that
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humans perform; actual working models are far too complex to
be exhaustively tested by simple experiments. Models designed
to exclusively reproduce experimental data are often too limited
to accomplish real-world tasks. Thus cognitive modellers
are caught between cognitive architectures that perform
real tasks but which cannot be fully tested experimentally,
and experiment-based models that cannot fully perform the
tasks human beings routinely do. We suggest therefore that
workability must be combined with experimental evidence as
desirable constraints on cognitive models.

1.1. Autonomous agency

To accomplish real-world tasks, any cognitive architecture
must be capable of “living” in an environment, that is, capable
of sensing that environment and acting on it in meaningful
ways, so as to accomplish significant life goals. A working
model of cognition (WMC) must be an autonomous agent, in
that it must sense and act in pursuit of its own agenda. The
IDA implementation of Global Workspace Theory, which we
discuss here, is such an autonomous agent. An autonomous
agent is a system situated within and part of an environment
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1 “Accurate reportability” of conscious contents is a standard operational
definition for conscious events in empirical studies of human conscious
cognition. Unconscious comparison conditions are those brain processes that
are believed to exist but which are not accurately reportable. Animal analogues
of “accurate report” are often used in macaque monkeys, for example, by having
the animal match stimuli from memory in a “match to sample” task.
that senses its environment and acts on it, over time, in pursuit
of its own agenda. Its actions must affect what it will sense
in the future, in much the way that turning one’s head will
change one’s visual experience (Franklin & Graesser, 1997).
Thus the agent is structurally coupled to its environment in the
sense of Maturana and Varela (Maturana, 1975; Maturana &
Varela, 1980; Varela, Thompson, & Rosch, 1991). Biological
examples include humans and animals in their evolutionary
niches. Artificial examples include autonomous robots and
autonomous software agents, as well as computer viruses. The
computational IDA model is an autonomous software agent as
defined above (Franklin, 2000).

The basic motivations, the agendas, of biological agents, are
“built-in” by evolution and modified by development. In the
case of artificial agents, basic motivations are built in. Once an
artificial autonomous agent is let loose in its environment, its
agenda is its own and no longer influenced by the designer.

Based on two decades of development we believe that the
issue of conscious cognition, as an essential component of
the cognitive architecture, can be integrated into such working
autonomous agents.

1.2. Consciousness as a explanandum for cognitive theory

The empirical evidence for a central role for conscious
cognition in the human brain is now difficult to dispute
(e.g. Baars (2002), Dehaene (2002)). While we have some
viable conceptions of consciousness as a scientific construct,
we do not at this time know necessary and sufficient conditions
for conscious cognition in the brain. Could such conditions
as cholinergic neuromodulation, spike coding and the like,
be essential? The answer is simply unknown at this time.
Therefore, we define here an intermediate concept of a
functionally conscious agent as an autonomous agent which
implements a Global Workspace Theory (GWT) for the role
of consciousness in a WMC, to facilitate the performance of
real-world tasks.

Note that we make no claim that a functionally conscious
agent such as IDA is phenomenally conscious, that it has
subjective experience (Franklin, 2003). Rather, we claim
that the non-phenomenal consciousness mechanism in a
functionally conscious agent can perform the known functions
of consciousness in humans. Within a single cognitive cycle
(Fig. 4) consciousness functions to filter the attention paid to
the agent’s internal model of its world, and to select contents to
be learned. Higher-level cognitive processes requiring multiple
cycles employ consciousness for a variety of other functions
including volitional decision making, analogy forming, self-
monitoring, etc. (Baars, 1988, p. 349).

1.3. Neural translatability

Neural translatability is a major goal. Since biological
minds are implemented in brains, we must be able to
plausibly translate an architecture, such as IDA’s, that claims
to model minds, into neural terms. IDA’s computational
components operate by activation-passing, a biologically
Fig. 1. Rapid “broadcasting” of activation for a single auditory word. This
MEG recording of a single, unexpected auditory word shows widespread brain
activity beginning 150 ms post-stimulus. In less than a second, activity is
visible in the auditory region of the superior temporal lobe (A1), but also in
orbitofrontal regions, which are not required for auditory analysis. In addition,
activation can be seen in the sensorimotor strip and even in visual regions
(occipital). Note that the MEG signal is projected onto a mathematically
inflated left hemisphere. Bright yellow signals highest MEG activation; light
blue is lowest. From Pulvermueller, Shtyrov, and Ilmoniemi (2003).

plausible mechanism. In addition, one might argue that the
nodes and links (described below) of IDA components like
Perceptual Associative Memory may be translatable, with PAM
nodes corresponding to cell assemblies and their links to
neuronal interactions between them. This type of translation
may be too simplistic. Rather, following Freeman (1999), we
suggest that nodes in perceptual memory may correspond to
attractors in the state spaces of cell assemblies, and their links
to the dynamics operating over the interactions between them.
To use the Skarda and Freeman (1987) example, a rabbit
recognizes the odour of a fox when the trajectory of its olfactory
bulb activity state following a sniff falls into the “fox attractor”.
The fox node in PAM would correspond to the fox attractor.
This suggests a general approach to neural translatability
between hybrid models like IDA and brain dynamics.

1.4. Brain and behavioural evidence

But how is direct brain evidence brought to bear on such
complex models? Fortunately we can point to some distinctive
predictions that have been supported. Both GWT and IDA make
testable predictions, as listed below.

1. The Global Access Hypothesis: conscious contents evoke
widespread brain activation, as proposed by Global
Workspace Theory;

There is now a sizable body of evidence to support the GWT
hypothesis that conscious, but not unconscious, brain events
evoke widespread cortical activity related to the reportable
content1 (Baars, 2002; Dehaene, 2002) (See Fig. 1). This
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Fig. 2. Global Workspace Theory (GWT). A theatre metaphor for Global
Workspace Theory.

prediction was initially made in 1983, and is not suggested by
any other theory of which we know.2 There is quite extensive
current debate about the evidence regarding this hypothesis
in the cognitive neuroscience literature (Tse, Martinez-Conde,
Schlegel, & Macknik, 2005).

2. The Working Memory Hypothesis (conscious contents
recruit unconscious WM functions needed for verbal
rehearsal, visual semantics, and executive functions) (Figs. 1
and 2);

GWT makes other novel predictions. For example,
it suggests that classical Working Memory (WM) may
involve distributed specialized systems, including language
components, long-term memory, visuospatial knowledge and
the like, which are recruited by the conscious components of
WM tasks. Current brain evidence strongly suggests that the
specialized components of WM are highly distributed in the
cortex and subcortical structures like the basal ganglia. Most
of these functions are unconscious in their details, but they
generally have briefly conscious components. It is noteworthy,
therefore, that all the classical “boxes” of Alan Baddeley’s WM
models have a conscious component—including conscious
perception of input, conscious access to verbal rehearsal, and
conscious decisions regarding verbal report. The most recent
2 GWT also converges well with the work of Chein and Schneider (2005),
whose “net of nets” architecture is based on experimental studies of skills that
are novel vs. practiced (and therefore less conscious). Practiced, predictable
skills show a marked reduction in cortical activity (Schneider & Shiffrin,
1977). It is interesting that the resulting network architecture bears a striking
resemblance to GWT.
version of Baddeley’s WM has a new conscious component,
called the Episodic Buffer (Baddeley, 2000). However, it does
not have a central role in recruiting linguistic, visuospatial
and executive functions; the current concept of the Episodic
Buffer is only the front end of long-term episodic memory.
GWT suggests a more active view of the conscious aspects of
human cognition. It is the consciously evoked “broadcast” that
serves to mobilize and guide the many unconscious knowledge
domains that enable Working Memory functions like inner
speech, visual problem solving and executive control (Fig. 2).

3. The Conscious Learning Hypothesis (all significant learning
is evoked by conscious contents, but the learning process
itself and its outcomes may be unconscious).

The theoretical reason for this claim is that learning novel
information requires a novel integration of existing knowledge
with unpredictable input. Thus GWT provides a principled
prediction for the role of consciousness in learning. It is
noteworthy, in this respect, that after five decades of attempts
to prove learning without consciousness, most findings show
typically small effect sizes, at very brief time intervals, using
highly predictable stimuli such as emotional facial expressions
(Snodgrass & Shevrin, 2006). More demanding learning tasks
almost always have a clear conscious component,3 and there is a
clear “dose-response” function between the degree of conscious
exposure and the amount of learning that results.4 This is indeed
what was historically called the Law of Effect, which should
perhaps be called the Law of Conscious Effect. The “conscious”
aspect of learning, which was taken for granted before the
behavioristic revolution, has now become largely forgotten.
Nevertheless, the evidence continues to show a clear monotonic
relationship between conscious study time and learning.

We now describe these two theoretical domains, Global
Workspace Theory and LIDA.

1.5. Global workspace theory

Global workspace theory aims to specify the role of
conscious brain events in cognition (Baars, 1983, 1988, 1997).

A theatre metaphor for GWT is a useful first approximation.
Unconscious processors in the theatre audience receive
broadcasts from a conscious “bright spot” on the stage.
Control of the bright spot corresponds to selective attention.
Backstage, unconscious contextual systems operate to shape
and direct conscious contents. GWT is a rigorously developed
set of testable hypotheses, and the theatre metaphor is only a
convenient reminder of its basic features (Baars, 1988, 2002).

GWT was developed based on robust evidence regarding
conscious processes, combined with the artificial intelligence
3 Implicit learning allows behavior that can be described as rule-directed
to be learned from conscious experience without the subject being able to
articulate the rule. However, all studies of implicit learning make use of
conscious events to evoke implicit learning processes.

4 Recent evidence indicates more robust learning effects for emotional
stimuli, such as emotional facial expressions. Such biologically relevant inputs
can be treated as single chunks in GWT, which do not require the recruitment
of novel knowledge sources that require consciousness to be integrated.
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Fig. 3. Global Workspace Theory and working memory. Global Workspace Theory integrates conscious contents with unconscious distributed expertise in the brain.
Notice the radically distributed nature of the architecture, with the exception of functions supported by consciousness, including action planning. On the left is a
simplified GWT model from Shanahan (2006). Notice that the small white circles, representing unconscious processors, constantly search conscious for (globally
distributed) messages that are relevant to them, somewhat like humans listening for air flight announcements. The right side shows how GWT suggests that cognitive
Working Memory may be mobilized by brief conscious access to perceptual input, rehearsed words or digits, output decisions, and other conscious events. Notice
that WM components like verbal rehearsal have both conscious and unconscious aspects. The details of language, perceptual processing and storage are handled
“offline” by unconscious distributed processors. Only the contents of the GW need to be conscious, as assessed by accurate reportability (Baars, 1988, 2002). (With
thanks to Murray Shanahan.)
concept of a “blackboard architecture” that combined multiple
sources of knowledge in order to identify an acoustical signal
in a complex, noisy, and ambiguous environment (Hayes-
Roth & Lesser, 1977). Such noisy and ambiguous signals are
routine in human perception, thought, and motor planning and
control. Based on a large body of experiments comparing
conscious and unconscious events, empirical generalizations
were proposed (Baars, 1988). These indicated that conscious
events were strongly associated with (a) limited-capacity
processes5 showing (b) internal consistency of conscious
contents, and (c) low computational efficiency. Thus skilled
speakers cannot consciously label the syntax of a sentence, even
though they constantly use the results of unconscious syntactic
analysis. In contrast to conscious contents, unconscious events
showed (a’) much larger capacity limits,6 (b’) with no
internal consistency constraint, and (c’) often with great
computational efficiency. This is a puzzling pattern if one
thinks of consciousness in terms of algorithms or neural
network outputs, where efficiency is at a premium. Rather,
these aspects of conscious cognition would seem to endanger
survival in a world in which fast, accurate decision-making is
essential. This puzzle makes sense, however, if consciousness
is viewed as “fame in the brain” (Dennett, 2005)—the ability
to recruit numerous unconscious knowledge sources, which
can respond in a distributed fashion to focal conscious events
(Figs. 1 and 3).
5 There is empirical evidence for capacity limits in conscious perception,
selective attention, immediate memory, and voluntary control (Cowan, 2001).

6 For example, long-term declarative memory, or the vocabulary of natural
language.
The first global workspace (GW) architecture was developed
by Alan Newell and coworkers to identify spoken words in
a noisy acoustical space (Nii, 1986). This is a very difficult
challenge, because rooms add echoes and background noises
to an already underspecified vocal signal, rendering standard
algorithmic pattern recognition largely ineffective. The GW
architecture of Newell et al., called Hearsay, helped to resolve
this challenge, just as humans must in order to survive and
reproduce. GW systems therefore showed a major functional
advantage, to compensate for the puzzling drawbacks listed
above.

GWT postulates that human cognition is implemented by a
multitude of relatively small, special purpose processes, almost
always unconscious. Although that may seem commonplace
today, the idea of widely distributed specialized processing in
the brain was highly controversial at the time it was proposed.
Processing coalitions compete for access to a global workspace
(and subjectively into consciousness, assessed behaviourally
by accurate reports). This limited capacity global workspace
serves to broadcast the message from the winning coalition to
all the unconscious processors, in order to recruit resources
to join in handling novel and high-priority input, and in
solving current problems. Consciousness in this view allows
us to deal with novel or challenging situations that cannot be
dealt with efficiently, or at all, by local, routine unconscious
processes. Conscious cognition solves the “relevance problem”
encountered in artificial intelligence and robotics, by enabling
access to unpredictable but necessary knowledge sources.
As a default, consciousness serves a lookout function to
spot potential dangers or opportunities, so that there is a
particularly close relationship between conscious content and
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Fig. 4. The IDA cognitive cycle.
7 Note that the lower-case spelling of “working memory” refers to
unconscious memory buffers unrelated to the standard Working Memory model
of cognition proposed by Baddeley and colleagues.
significant sensory input. The external senses can be simulated
endogenously by way of conscious visual imagery, inner
speech, and inner sensorimotor practice. These endogenous
“senses” have been shown to mobilize regions of cortex and
subcortex that become active with similar exogenous events.

Conscious contents are always guided and constrained
by unconscious contexts: goal contexts, perceptual contexts,
conceptual contexts and shared cultural contexts. Each context
is itself a coalition of processes. Though contexts are
unconscious, they shape conscious processes. For example,
unconscious spatial knowledge is required to interpret the
orientation of conscious visual objects. In GWT, widespread
learning activity is evoked by conscious contents. Implicit
learning occurs when unconscious processors are cued
by conscious contents to perform problem-solving without
reportable rule generation. Tasks like language learning are
largely implicit, but they are primarily evoked by conscious
input. (See Baars (1988, 2002), for further details.)

2. The IDA cognitive architecture

IDA (Intelligent Distribution Agent) is an intelligent
software agent (Franklin & Graesser, 1997) developed for the
US Navy to perform tasks that previously required trained
human experts (Franklin, 2001). At the end of each sailor’s
tour of duty, he or she is assigned to a new billet in a way that
takes into account the sailor’s preferences, the requirements of
the Navy, and a host of regulations. This assignment process is
called distribution. The Navy employs some 300 people, called
detailers, on a full-time basis to make these new assignments.
IDA completely automates the role of the human detailer. The
IDA software agent is up and running, and has matched the
performance of Navy detailers.

The IDA model includes a computational component,
i.e. one that is the currently implemented and running, and
a broader conceptual IDA, some of which is yet to be
implemented. In addition to incorporating GWT as a functional
equivalent of conscious cognition, IDA implements a number of
other psychological theories (Baddeley, 1993; Barsalou, 1999;
Conway, 2001; Ericsson & Kintsch, 1995; Glenberg, 1997;
Gray, 2002; Sloman, 1999). Autonomous agents in complex,
dynamic environments frequently and iteratively sample their
environments and act on them. Much of human cognition
operates by rapid interactions between conscious contents,
the various memory systems and decision-making. We call
these rapid routines cognitive cycles (Baars & Franklin, 2003;
Franklin, Baars, Ramamurthy, & Ventura, 2005). Findings
consistent with such cognitive cycles have been reported by
neuroscientists (Freeman, 2003; Fuster, Bodner, & Kroger,
2000; Halgren, Boujon, Clarke, Wang, & Chauvel, 2002;
Lehmann, Strik, Henggeler, Koenig, & Koukkou, 1998). While
cognitive cycles can overlap, producing parallel actions, their
conscious components can only occur serially. The IDA
model suggests therefore that conscious cognition occurs as a
sequence of discrete, coherent episodes separated by quite short
periods of no conscious content (see also VanRullen and Koch
(2003)).

The IDA model is a major step toward finer-grained
computational modelling of GWT, including the vital question
of how to specify the specialized knowledge sources that
GWT must treat merely as black boxes. A domain-independent
version of IDA is now being developed to handle a wider
range of tasks. IDA aims to be a true autonomous agent with
a capacity corresponding to conscious contents in humans.

The IDA cognitive cycle can be divided into nine steps (see
Fig. 4).

1. Incoming sensory stimuli is filtered through preconscious
perception, where meaning is added and a percept produced.

2. The current percept moves to preconscious working
memory,7 where it participates, along with un-decayed
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percepts from previous cycles, in the structure building of
higher-level perception.

3. The current structure from working memory cues transient
episodic memory and declarative memory, producing local
associations, which are stored in long-term working
memory.

4. Coalitions of the contents of long-term working memory
compete for consciousness, thus making it possible to recruit
system resources for the most relevant, urgent, and important
task components.

5. The conscious broadcast (a la Gobal Workspace Theory) oc-
curs, enabling various forms of learning and the recruitment
of internal resources. The broadcast is hypothesized to re-
quire approximately 100 ms, based on a number of empirical
sources.

6. Procedural memory responds to the contents of the
conscious broadcast.

7. Other responding (unconscious) schemes instantiate copies
of themselves in the action selection mechanism, bind
variables, and pass activation.

8. The action selection mechanism chooses an action for this
cognitive cycle.

9. IDA then acts on her internal and/or external environment.

2.1. The cognitive cycle hypothesis

Most higher-level cognitive processes are built on multiple
perception-action cycles as iterative “atoms”. The IDA
cognitive cycle predicts that frequent (5–10 Hz) selection
takes place in the following domains: perceptual associative
memory, preconscious working memory, transient episodic
memory, procedural memory, action selection—all by way
of consciousness. Sensory data, past events, and possible
responses are all selected for importance, urgency, insistence,
and relevancy. The IDA cognitive cycle can be thought of as
a rapidly iterating sequence of selective operations designed
to turn incoming sensory data into actions on the world.
Recent evidence indicates that episodic retrieval in the human
brain involves theta-wave synchrony between hippocampus
and neocortex; such oscillations are in the correct temporal
domain for 5–10 Hz cycles (Jensen & Tesche, 2002). This rapid
iteration of cognitive cycles allows for timesharing to produce
multitasking such as visually tracking the movements of several
objects at once. The IDA model suggests additional testable
predictions. Among these is the selective character of cognition.

While IDA has a number of symbolic features, it is brainlike
in using activation-passing throughout.8 Thus, it can be thought
of as a hybrid symbolic/connectionist system. In particular,
the implementation of perceptual associative memory (PAM)
is modelled after the slipnet in the Copycat architecture
(Hofstadter & Mitchell, 1995). Nodes and links of PAM that
are over threshold are selected as part of the percept (please
see Step 2 above of the IDA cognitive cycle), and serve as a
8 Though there’s frequent activation passing, there are no neural nets as such
since no transfer function is applied to a node’s activation.
common representational currency throughout the rest of the
agent’s architecture.

The original IDA software agent was entirely hand crafted,
and was not designed to learn. An extension of IDA to a
software agent LIDA (“Learning IDA”) that does learn is now
in progress (Franklin & Patterson, 2006; Ramamurthy et al.,
2006). The LIDA model fleshes out the GWT prediction about
learning by postulating four types of learning during each
rapid cognitive cycle (perceptual learning, episodic learning,
procedural learning and attentional learning). Each of these
procedures is initiated by the contents of consciousness during
the cycle, and is entirely automatic (unconscious) from that
point onward. As a consequence, to attend (consciously) is to
learn. Volitional learning and more complex problem solving,
which occur over multiple cycles, are therefore a matter of
directing the automatic learning processes.

3. Summary and conclusion

In recent decades progress has been made in modelling
human cognition. Most current models do not, however,
generally meet four desirable standards: They would not
perform functions attributed to them in the challenging
environment of the real world; they are not autonomous agents,
like humans and animals living in their natural environments;
they rarely deal explicitly with the challenge of conscious
cognition; they are not readily translatable into plausible
neural terms. The combined approach of Global Workspace
Theory and the IDA (LIDA) symbolic/connectionist model
aims to address these challenges, while generating distinctive
and testable hypotheses. One major prediction that has found
experimental support is the very widespread cortical activation
observed for matched conscious vs. unconscious brain events.
This result has now been found in a large number of studies
(e.g. Baars (2002), Dehaene (2002)). We also see promising
links with the strong empirical tradition of Working Memory
research (Baars & Franklin, 2003), and with renewed interest
in brain rhythms in the near-10 Hz range, postulated to be
the iteration time of the IDA cognitive cycle (Freeman, 2003;
Halgren et al., 2002; Lehmann et al., 1998). In addition, the
GWT/LIDA model makes the testable claim that conscious
cognition is necessary for non-trivial learning to occur. We
believe this approach has been fruitful and will lead to further
progress.
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