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1. Introduction 
 
The theory of nonlinear dynamics has greatly expanded our 
understanding of neural mechanisms by which large-scale patterns of 
brain activity self-organize.  The new concepts give us fresh insights into 
the neurodynamics of perception as an active process, by which brains 
seek desired input by active search and by regulation of cortical 
responses to stimuli received by the sensory cortices [1]. The classical 
behaviorist and cognitivist paradigms in psychology and neural networks 
clearly fail to address the most basic properties of biological intelligence 
and control, which are its creativity and intentionality.  Chaotic dynamic 
systems not only destroy information (in the Shannon-Weaver sense); 
they also create information, and in so doing they create meaning. Brains 
are chaotic not in the sense of deterministic chaos, which is low 
dimensional, stationary, autonomous, and noise-free, but in the sense of 
stochastic chaos, which is constrained noise internally generated [2, 3-6].  
 

Measurements from depth electrodes of microscopic axonal action 
potentials (spikes), and from brain surface electrodes of mesoscopic 
dendritic synaptic potentials giving the electrocorticogram (ECoG), and 
from scalp electrodes giving the macroscopic electroencephalogram 
(EEG) show that brains, as chaotic systems [7], don’t merely filter and 
process sensory information. Brains import raw sense data that is 
represented by microscopic stimulus-driven spike activity. They replace 
it by constructing mesoscopic percepts that are manifested in 
spatiotemporal patterns of wave packets [8-10]. These local patterns 
combine into macroscopic states that involve much or even all of each 
cerebral hemisphere [11, 12]. They do this several times a second in the 
sensory system in sequences of wave packets [10, 12] resembling 
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cinematographic frames, both asynchronously with local time-varying 
frequencies [13] and globally synchronized at the same frequency [14].  
 

This Chapter draws on diverse experimental evidence to outline a 
neural mechanism for the repetitive state transitions that initiate 
construction of cinematographic sequences, for which clinical evidence 
has been cited [15]. Section 2 describes the spatiotemporal patterns of 
electrocorticograms (ECoG) that are recorded from the olfactory system 
during arousal and reinforcement learning. The same basic patterns 
occur in neocortical sensory systems. Section 3 introduces mutual 
excitation and the positive feedback by which cortical background 
activity is created and stabilized. Section 4 introduces inhibition and the 
negative feedback by which the carrier oscillations of wave packets are 
generated and stabilized. The concept is developed of bistability through 
input-dependent changes in nonlinear feedback gain that switch sensory 
cortices between receiving and transmitting states. Section 5 summarizes 
evidence for conditional stabilization at self-organized criticality, by 
which state transitions between these two states of cortex can be 
described as phase transitions in metastability near pseudo-equilibrium. 
Section 6 derives a diagram of thermodynamic phase space and phase 
transitions for cortex far from equilibrium that summarizes cortical 
operations in the action-perception cycle [16]. Section 7 describes the 
‘shutter’, discusses its significance in perception, and summarizes.  
 
2. Evoked versus induced activity in the olfactory and 
neocortical sensory systems  
 
The creative property of nonlinear dynamics is not readily apparent in 
the homeostatic feedback mechanisms of brain reflexes, which insure the 
stability of brain function by keeping the internal environment 
(temperature, pressure, volume, and chemical constitution) of the brain 
near optimal levels despite environmental vicissitudes.  It becomes clear 
in modeling perception, which requires creative interaction with the 
external environment for achieving life goals.  A relatively simple 
example comes from study of neural activity in the olfactory bulb.  The 
olfactory system is a semi-autonomous module that interacts with other 
parts of the forebrain by exchanging neural information. It receives 
sensory input and also centrifugal controls through release of 
neuromodulators from brain stem nuclei. An orchestrated mix of 
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neuroamines and neuropeptides [17] modulates the receptivity of the 
bulb and olfactory cortex in arousal, search, and learning (Fig. 1).  
 
Endogenous oscillatory activity persists after the olfactory system has 
been surgically isolated from the rest of the brain, which shows that its 
basic functions are self-organizing.  However, its aperiodic chaotic 
activity disappears when its parts have been surgically disconnected [10], 
showing that its aperiodic activity is a global property that is not due to 
the entrainment of single neurons acting as chaotic generators. This is 
important, because the stimuli that are recognized in perception are 
spatiotemporal patterns, such as a facial expression, a musical phrase, 
the fit of a jacket on the torso, etc.  The sensory receptor activity they 
excite or inhibit are characterized by spatial relationships between each 
part and every other part of a pattern, so that the determinants of 
perception in sensory cortical function must also be global, not local as in 
feature detector neurons.  

 
Fig. 1. A. A food-deprived cat at rest is aroused by an odor of fish and searches 
for it by sniffing. B. After feeding to satiety there is no arousal. [10, Fig. 7.17 p. 
442].  
 

Simultaneous recordings of ECoG activity from arrays of 64 
electrodes placed on the olfactory bulb and cortex of rabbits demonstrate 
the spatial coherence of ECoG oscillations carrying spatiotemporal 
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patterns.  In every subject the recordings reveal a shared oscillation in 
cortical potential over the entire array at the same instantaneous 
frequency [18-20]. The fluctuation serves as a carrier wave for perception 
by means of spatial patterns of amplitude modulation (AM) (Fig. 2, left). 
The spatiotemporal patterns of the frequency of firing of bulbar and 
cortical neurons are correlated with the AM patterns. The shared carrier 
waveform is usually aperiodic and unpredictable, reflecting the chaotic 
dynamics of sensory cortices.   

 

 
Fig. 2. Left: Examples of contours of root mean square amplitude of 64 ECoG 
segments from and 8x8 (4x4 mm) array on the olfactory bulb. From [18].          
Right: clusters of points projected from 64-space by discriminant analysis 
showing classification of patterns by Euclidean distances of points from the three 
centers of gravity for control (air •), a reinforced odorant (amyl acetate +), and an 
unreinforced odorant (butyl alcohol -). From [19].  

 
The spatial AM patterns in the sensory cortices cannot literally 

represent the stimuli that are transmitted to them over their sensory 
input pathways, because they lack invariance with respect to unchanging 
stimuli [5, 8, 9, 17-21]. They change instead with changes in 
reinforcements, the learning of other new conditioned stimuli (CS) in 
serial conditioning, and other contextual changes that are associated with 
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stimuli during periods of training to respond to them, in brief, the 
meanings of the CS, which are as unique for each of the subjects as are 
the AM patterns. These properties have also been found in ECoG of 
visual, auditory and somatic neocortices, and they hold in both the beta 
and gamma ranges. Owing to the fact that the waveform is everywhere 
similar, the AM pattern of each frame can be represented by a contour 
plot (Fig. 2, left) of the 64 root mean square amplitudes of the beta (12-
30 Hz) or gamma (30-80 Hz) oscillation in each frame. The 64 values 
specify a vector and a point in 64-space. Similar patterns form clusters of 
points in 64-space, which can be visualized by use of discriminant 
analysis to project them into 2-space (Fig. 2, right). In discriminative 
conditioning with 2 or more CS, the classification of frames is done by 
calculating the Euclidean distances of the data points from each 
point/frame to the centers of gravity of the clusters and finding the 
shortest distance.  

 
When ECoG is observed over time spans of minutes to hours or 

years, the olfactory dynamic mechanism appears robustly stable in a wide 
range of amplitudes. The stability in the olfactory system and in 
neocortex has been explored in detail in terms of chaotic attractor 
landscapes [21, 22], metastability based in “coordination dynamics” 
[23, 24], chaotic itinerancy [25], and explicit vs. spontaneous symmetry 
breaking among multiple ground states in dissipative many-body physics 
[26]. In the course of normal behavior the states are changed by 
neuromodulatory inputs from the hypothalamus and brain stem that 
induce transitions such as those between stable states of waking and 
sleep. Abnormally, the waking state is destabilized by intense excitation 
leading to transmitter depletion, causing the brain to transit to an 
alternative state that is characterized by a form of epilepsy [27]: complex 
partial seizures that include behavioral absence (loss of consciousness 
with failure to attend, perceive or learn). An important normal form of 
destabilization occurs during learning to identify a new odorant, which 
requires the actions of neuromodulatory nuclei in the brain stem that 
release neuroamines and neuropeptides under limbic control.  

 
These properties indicate the need to distinguish among three types 

of change in both olfactory and neocortical dynamics. First, a 
physiological stimulus to receptors causes a pattern of action potentials 
that through relays from receptors injects a pattern of spikes into the 
bulb that represents the stimulus. The driven cortical response is an 
evoked potential. By itself the input does not force a state transition, but 
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it perturbs the dynamics and, when ended, allows the system to relax to 
its prestimulus state without changing the cortical dynamics. Second, 
learning establishes an attractor landscape in the cortex. Each attractor is 
surrounded by its basin of attraction that corresponds to the 
generalization gradient for a category of stimulus [9]. Formation of a new 
basin and its attractor is an irreversible structural bifurcation [7, 22]. 
Third, an act of perception is triggered by the representation of a 
stimulus when the relevant action potentials select an attractor in the 
landscape. The percept is dependent on a spatiotemporal activity pattern 
that is shaped by synaptic weights that e shaped by prior Hebbian and 
non-Hebbian learning [28]. These modified synapses that store diverse 
forms of experience form nerve cell assemblies that are intermingled and 
overlapping. At each moment of engagement by a subject with the 
environment, a selection must be made in the primary sensory cortices 
by priming the relevant cell assemblies, that is, by enhancing their 
excitability and sensitivity to anticipated input. That preparation for 
selection is done by a process that is called “preafference” [29, Bressler 
Chapter]. This process has been identified with the formation of a global 
pattern of synchronous oscillation [3, 14, 30] that is established through 
widespread exchanges of action potentials among sensory cortices and 
the limbic system. The global pattern elicits and modulates the attractor 
landscapes of all sensory cortices simultaneously, thereby preparing 
them for the range of expected outcomes following each act of 
observation on the environment.  

 
This global state of preparedness in anticipation constitutes a 

metastable state [Kelso Chapter]. The incoming sensory stimuli select 
one basin of attraction from the landscape in each sensory cortex. This 
exclusive choice can be referred to as spontaneous symmetry breaking, as 
distinct from the explicit symmetry breaking of the evoked potential [26]. 
The transition from high-dimensional chaos to more stable dynamics 
with the selection of a lower-dimensional attractor may correspond to 
dynamic logic [Perlovsky Chapter], which describes transitions from 
vague and uncertain potential states not yet realized to a crisp and 
certain perception and cognition following detection of an anticipated 
stimulus, as an essential mechanism preceding higher cognitive 
functions. 

 
The endogenous state transition in the formation of a wave packet 

having an AM pattern is the essence of an act of perception. 
Transmission of the AM pattern must be followed by another state 
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transition that returns the cortex to the receiving state. The key evidence 
for the first transition is provided by measurements of the pattern of 
phase modulation of the beta or gamma carrier waves of successive 
bursts. Each AM pattern is accompanied by a spatiotemporal pattern of 
phase modulation (PM). The phase is defined at the dominant or mean 
carrier frequency in the immediate past. The onset of the transition is 
characterized by an apparent discontinuity in the phase resembling 
“phase slip”, followed by emergence of a new carrier frequency, on 
average differing by ±10-20 Hz. The spatial pattern of the phase has the 
form of a cone (Fig. 3, left) for which the apex is either maximal lead or 
maxmimal lag. The cone is displayed by concentric circles representing 
isophase contours. The cone appears because a state transition in a 
distributed medium does not occur everywhere instantaneously. Like the 
formation of a snowflake or raindrop it begins at a site of nucleation and 
spreads radially. The phase gradient in rad/m divided by the carrier 
frequency in rad/s gives the phase velocity in m/s. The observed phase 
velocities conform to the conduction velocities of propagated action 
potentials on axons running parallel to the cortical surfaces. The apical 
location and sign vary randomly between successive frames (Fig. 3, 
right). The spread depends on the existence of a small proportion of long 
axons among the predominantly short axons [22]. The sign at the apex 
depends on whether the short axons (phase lead at the apex, explosion) 
or the long axons (phase lag at the apex, implosion) dominate the 
transmission.   

 
These properties show that the state transition is an endogenous 

property of distributed cortical networks. It cannot be attributed to a 
localized “pacemaker” in the cortex, thalamus, or striatum. Then there is 
the second state transition that returns the cortex to the receiving state is 
intrinsic to the cortical background activity. There is no apparent phase 
discontinuity. Instead, the analytic amplitude may diminish to such a low 
level that the phase becomes undefined. If in this condition there is fresh 
input to the cortex, the possibility emerges of a new state transition. 
Recurrence of the episodic phase re-setting gives the cinematographic 
sequences of wave packets expressed in AM and PM frames. Each frame 
begins after the phase discontinuity manifests phase re-setting. The time 
lapse before the cone disappears demonstrates the duration of the frame.  
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Fig. 3. Left: examples of phase cones from neocortical ECoG of human and 
rabbit. From [30]. Right: outline of rabbit bulb with square array superimposed 
on the opened spherical surface. The arcs show a representative phase cone; the 
dark symbols • show the locations of positive apices (“explosion”); the light 
symbols o show negative apices (“implosion”). From [31].  
 

Next the question is addressed, to what extent might the dynamics of 
the olfactory system hold for other sensory areas? The main components 
of the olfactory system are allocortex.  This is an ancient three-layered 
neuropil that is found in all vertebrates in a variety of forms. The six-
layered neocortex, found only in mammals, is far more complex and has 
widely varying forms and degrees of specialization. The relative 
simplicity of allocortical structure and dynamics makes it a good 
platform from which to discern what properties might be fundamental in 
the dynamics of neocortex. The visual, auditory and somatic sensory 
cortices, all or which are neocortical, reveal the same basic modes of 
operation in perception as in olfaction: the genesis of broad-spectrum, 
aperiodic ECoG activity with statistically correlated spike activity; 
formation of successive wave packets with spatially coherent carrier 
waves; AM patterns that are classifiable with respect to learned 
conditioned stimuli and responses (CS and CR); and accompanying PM 
patterns in the form of a cone (Fig. 3, left) with randomly varying 
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location and sign of the apices. Neocortical AM and PM patterns are 
larger and more complex than allocortical patterns, and they lack the 
easy frame marker provided by respiration and sniffing (the bursts of 
gamma seen in Fig. 1, A). Otherwise the properties described in this and 
the following sections hold for both types of cortex. Paramount among 
these properties is the ubiquitous background activity, which holds the 
key to understanding cortical function and therefore higher cognitive 
function.  
 
3. Self-organization by positive feedback: mutual excitation 
and excitatory bias 
 
The pervasive spontaneous activity of cerebral cortex is easily observed 
both in spikes from axons and in field potentials from dendritic current 
seen in ECoG (Fig. 1). The source of this activity has been identified as 
mutual excitation among excitatory cells [6,10]. In neocortex 80% of the 
neurons are pyramidal cells, which are excitatory, and 90% of their 
synapses are from intracortical neurons. The 10% of synapses from 
sources outside cortex are excitatory. Therefore, the overwhelming 
interaction among neocortical neurons is by mutual excitation among 
pyramidal cells. In the olfactory bulb the organization differs, because the 
equivalents of pyramidal cells (the mitral and tufted cells) are 
outnumbered >100:1 by the equivalent inhibitory interneurons (the 
internal granule cells). A dynamic balance is maintained by a large 
population of excitatory interneurons (the periglomerular cells in the 
outer layer bulb) [10]. These neurons transmit and receive by GABA, so 
they are commonly misidentified as inhibitory interneurons; however, 
their high content of chloride ions [32] makes their GABA-A synapses 
excitatory. Their sustained mutually excitatory activity is not the same as 
that of the “reverberatory circuits” of Hebb and Lashley for putative 
temporary storage of memories [33] in small nerve cell assemblies [34]. 
Instead their background activity is steady state and large scale.  
 
The mechanism in periglomerular and other excitatory populations has 
been described using a network of ordinary differential equations (ODE) 
[10]. The topology of connections in neural populations is represented 
(Fig. 4) by K-sets of neurons of like kind. The simplest are populations of 
noninteractive neurons of two kinds: KOe excitatory or KOi inhibitory, 
which when synchronously activated behave as would an average neuron, 
but with state variables of wave and pulse densities in place of membrane 
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currents and spike trains. A KIe population of interacting excitatory 
neurons such as the periglomerular cells can, by consideration of 
symmetry conditions, be reduced to a positive feedback loop, in which 
the dynamics of the KOe forward and feedback limbs is identical, because 
each neuron in the receiving state continually renews the population in 
the transmitting state. Each limb is described by weighted linear 
summation of wave density in dendrites and static nonlinear conversion 
of wave density to pulse density. The dendritic operation can be 
described by a 2nd order linear ODE with gain constants for the synapses. 
The solution of the ODE for impulse input conforms to the dendritic 
postsynaptic potential (PSP) of single neurons to single-shock impulse 
input: a rapid exponential rise governed by synaptic delay and the cable 
properties of the dendrites, followed by exponential decay that is 
governed by passive membrane resistance and capacitance (Fig. 4, KO). 
In a population of neurons the output of the axons is observed in a post-
stimulus time histogram (PSTH) of representative single neurons that 
has the same form and rate constants as the summed PSP of the 
dendrites.  

 
Fig. 4. KO represents the dynamics of a non-interactive population; the response 
to impulse input (single shock electrical stimulation) corresponds to the 
postsynaptic dendritic potential of single neurons. KI represents an interactive 
population of like kind: excitatory KIe or inhibitory KIi with a prolonged 
monotonic closed loop impulse response (averaged evoked potential AEP and 
PSTH). KII represents interaction between excitatory KIe and inhibitory KIi 
neuron populations with an oscillatory closed loop impulse response (AEP or 
PSTH). From [10, Fig. 1.6, p. 40] 
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Conversion from dendritic wave density to axonal pulse density at trigger 
zones is governed by an asymmetric sigmoid function [10,35] (Fig. 5). 
The nonlinear thresholds of the axons determine lower asymptote. The 
neurons cannot fire when they are inhibited below threshold by input 
from inhibitory interneurons. The upper asymptote is determined by the 
axon refractory periods. The neurons cannot fire with excitatory input 
when they have already recently fired.  
 

 
 
Fig 5. Wave-to-pulse conversion at trigger zones in populations is governed by a 
static nonlinearity, which is the asymmetric sigmoid curve that is shown with a 
high slope in arousal (Fig. 1, A) and a low slope in rest (Fig. 1, B). The pairs of 
curves asymptotic to zero show the derivative of the sigmoid curve, which gives 
the nonlinear gain. Linear approximation is by replacing the function with the 
tangent at the desired operating point, for which the slope approximates the fixed 
feedback gain. A: KIe set, B KIIob set. Equations are given in [2, 10, 34].  
 
Piecewise linearization [10] of cortical dynamics is achieved by replacing 
the nonlinear function (Fig. 5) with a constant gain value given by the 
slope of the tangent to the sigmoid curve at a specified operating point 
for wave density input and pulse density output. The operating point in 
the steady state is at unity gain, when input amplitude is equal to output 
amplitude. The displacement from a steady state set point by impulse or 
sustained input can raise or lower the gain from unity. There are two 
stable set points at unity gain: one is found in the KIe set at normalized 
wave density v > 0 (Fig. 5, A). The other set point is found at v = 0 in the 
KII set, which is formed by the interaction between a KIe set and a KIi 
set. The mutually inhibitory KIi set has a stable set point only at zero gain 
giving a flat ECoG, so a KIi set is nonfunctional without an excitatory bias 
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from one or more KIe sets. The maximal asymptote, Qm , is determined 
by refractory periods; however, as indicated by Fig. 5, Qm varies with the 
level of arousal under limbic control. Two levels are shown in Fig. 5. The 
ECoG with arousal state is seen in Fig. 1, A. The ECoG in the rest state is 
seen in Fig. 1, B.  
 
The impulse response of the closed loop KIe system (Fig. 4, KI) is given 
by the averaged, single-shock evoked potential (AEP) in the wave density 
mode (ECoG recording) or by the post-stimulus time histogram (PSTH) 
in the pulse density mode (time-locked averages of spike train recording 
from single neurons, Fig. 6, left, or multiunit recording – not shown). 
The utility of the impulse response lies in the information it gives about 
the state of the system and its dynamic properties, because it contains all 
frequencies, and so it reveals the characteristic frequencies of the neural 
population in its current near-linear operating state. These properties are 
displayed in a state space diagram (Fig. 6, right) that is derived by 
linearization of the two coupled 2nd-order nonlinear ODE that model KIe 
dynamics in the vicinity of the prestimulus operating point (Fig. 5, A). 
Averaging of the impulse responses (Fig. 6, left) from repeated 
stimulation at regular time intervals is necessary to remove the 
microscopic background activity treated as noise and extract the 
mesoscopic signal, which is the trajectory by which the system returns to 
its prestimulus state after each impulse.  
 
Linear analysis is the most powerful tool available to neurodynamicists 
[36-41]. In the variant using root locus analysis the characteristic 
frequencies of the linearized system are represented as closed loop poles 
(small triangles Δ in Fig. 6, right), and the characteristic forbidden “anti-
resonant” frequencies are shown as zeroes (� in Fig. 6, right) in the roots 
of 2 coupled 2nd-order ODE representing the closed loop dynamics. The 
open loop poles in the feedback ODE become the zeroes in the closed 
loop, small-signal, linearized 4th- order transfer function (the symbols �  
on the left half of the negative real axis in Fig. 6, right).  
 
A very useful experimental control parameter is the intensity of the 
impulse (the product of amplitude and duration). Changing the stimulus 
intensity causes the characteristic frequencies in the response to change. 
The changes in frequency are translated graphically into the most useful 
physiological parameters, which is the strengths of interaction (gains) 
between populations of neurons. The frequencies (roots) change along 
the heavy lines (root loci), and the gains are calculated as the values for 
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linearized closed loop gain (the intersections of the root loci with the 
contours in Fig. 6, right). When the intensity is raised or lowered, the 
characteristic frequencies of the open loop components of the system 
(the synapses and their strengths) are not changed, but the functional 
properties of the system are altered by the amplitude-dependent 
nonlinearity at the trigger zones that is described by the asymmetric 
sigmoid curve (Fig. 5, A). Changing the response amplitudes by changing 
the input intensity changes the characteristic frequencies of the closed 
loop poles and zeroes by changing the set points at which the tangent 
slope is calculated. With systematic step-wise change in stimulus 
intensity, the changed values of the closed loop poles inscribe the root 
loci (orthogonal to the gain contours).  
 
These root loci (at zero radians phase in positive feedback and at π 
radians phase in negative feedback) quantify the degree of stability of the 
system and specify how a change in the input can bring about either 
greater stability with resistance to state transition (poles moving to the 
left away from the imaginary axis), or to lesser stability and an increase 
in likelihood of a transition to a new state (poles moving to the right 
toward the imaginary axis). The postulate to be considered is that the 
formation of an AM pattern during an act of perception might take place 
when poles shift to the right of the imaginary axis, giving exponential 
terms with positive rates of increase.  
 
The arrowheads on the root loci in Fig. 6 indicate the direction in which 
gain increases with decreasing response amplitude. On the one hand, 
strong impulse that drives an increase in impulse intensity increases 
response amplitude and decreases feedback gain, which increases the 
decay rate to the prestimulus background level. The decrease in KIe 
feedback gain with increased input intensity is due to the refractory 
periods; neurons that are challenged to fire cannot do so if they have 
recently already fired. On the other hand, extrapolation of the decay rate 
of the PSTH to zero input (response threshold) gives zero decay rate. 
Such a response would be a step function [10]); it cannot be observed, 
because it has zero amplitude. The extrapolation of the decay rates to 
zero and the feedback gain to unity at threshold using this root locus 
demonstrates that the population is self-stabilized at its steady state 
excitatory output by refractory periods without need for inhibition. The 
pole at the origin of the complex plane (Fig. 6, right, large Δ) conforms to 
a zero eigenvalue (zero rate of change, an infinite time constant).  
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That pole represents the functional steady state of the KIe population 
that would hold in the absence of input: steady state excitatory pulse 
density output, the background activity. The state is stable, because 
excitatory input raises the output but decreases the gain, so the 
population activity tends toward the steady state level. Decreased 
excitatory input or increased inhibitory input does the reverse. Therefore 
the pole represents a point attractor, which differs from the state of zero 
activity under deep anesthesia or in death, in that the mutual excitation 
provides sustained, stable, steady state excitatory bias within itself and to 
other neural populations in the olfactory system. The non-zero point 
attractor governs the KIe population dynamics and modulates all other 
populations that receive the excitatory bias.  
 

 
 
Fig. 6. Left: Impulse responses of a periglomerular cell on excitation of the 
primary olfactory nerve at 6 intensities. Data (Δ) in averaged post-stimulus time 
histograms were fitted with solutions to a matrix of four 1st order ODE. 
 Right: Root loci (dark lines) of the changes in poles as a function of gain 
(elliptical contours), kp. At zero gain the poles (Δ) lie at the open loop values (� ), 
rise rate = -530/s, decay rate = -230.s. The left-right arrows indicate the 
direction of change in the real rate constants as gain contours (ellipses) increase 
to infinity. The up-down arrows show the direction of approach of the complex 
conjugate roots to zeroes in the right half of the complex plane (not shown). From 
[10, Fig. 5.10 p. 289, Fig. 5.13 p. 292]. 
 
Direct experimental observation of the pole at the origin is obviously not 
possible, because the impulse response has zero amplitude and zero 
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decay rate. Moreover, every KIe population has on-going input from 
other populations, including the periglomerular population getting both 
sensory input and centrifugal input from other parts of the forebrain, so 
the observed steady state gives a pole that is displaced to the negative 
side of zero frequency on the real axis of the complex plane (gain = 0.53).  
 
The root locus method requires piecewise linearization of the dynamics. 
The technique depends on the fact that the impulse input does not 
change the system structure. Instead the input imposes an extra term, a 
perturbation superimposed on the background activity that reveals the 
dynamics by the trajectory of relaxation back to the prestimulus state: 
the explicit breakdown of symmetry, in contrast to the spontaneous 
breakdown of symmetry [26] that, as will be shown, characterizes 
perception. The same pair of 2nd-order ODE is applicable across the 
whole range of piecewise linearization but with a different value of the 
gain parameter for each level of input. More generally, populations of 
neurons that share the properties of thresholds, refractory periods, and 
mutual excitation can be described as governed by a non-zero point 
attractor, which describes the process by which excitatory populations 
maintain non-zero steady state background activity without need for 
inhibition to prevent runaway excitatory discharge. Thereby mutual 
excitation provides the excitatory bias in cortex that is essential for 
maintaining “spontaneous” background activity. This activity in many 
circumstances has been shown to have approximately a Gaussian noise 
amplitude histogram and a power-law power spectral density with slope 
near -2 (1/f2, “brown noise” [42]).  
 
4. Measuring and modeling oscillations using root loci in 
piecewise linearization  
 
The introduction of inhibitory neurons (Fig. 4, KII) is required not for 
stabilization of neural networks but for oscillations, most notably in the 
olfactory system for oscillations in the gamma range, 30-80 Hz (Fig. 1, A 
and Fig. 4 KII, Fig. 7, left). The specification of a central frequency in this 
range, 40 Hz, is immediately apparent from measurement of the open 
loop time constants (Fig. 4 KO) of the PSP or PSTH, the impulse 
responses of the non-interactive excitatory and inhibitory neurons 
comprising the olfactory populations. The exponential rise times average 
near 1.25 ms; the exponential decay times are near 5 ms. One cycle of 
oscillation requires two passages around the loop, giving a total delay of 
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25 ms (the wave duration of 40 Hz). However, the excitatory neurons 
excite each other, and the inhibitory neurons inhibit each other, as well 
as interacting in negative feedback (Fig. 4, KII). These two types of 
positive feedback — mutual excitation in the KIe population and mutual 
inhibition in the KIi population — modulate the frequency of negative 
feedback in the gamma range by variation in the 4 types of forward gain: 
excitatory or inhibitory synapses on excitatory or inhibitory neurons.  

 
Fig. 7. Left: A set of 64 simultaneously derived impulse responses from an 8x8 
4x4 mm array of electrodes for recording ECoG (the square frames in Fig. 3 left 
and the open square inset in Fig. 2, right) gave different amplitudes at different 
locations on single-shock stimulation of the olfactory nerve. The upward shift in 
baseline was provided by the KIe periglomerular neurons with positive gain kp 
(shown by the PSTH in Fig.  6, left). Oscillations all had the same frequency, with 
decay rates proportional to amplitude. From [10, Fig. 4.27 p. 221]. Right. The 
poles given by the frequencies and decay rates of the dominant damped cosine 
wave that was fitted to each of the 64 impulse responses gave root locus Mode 1e 
for the KII set with maintenance of unity gain (Fig. 5, B). The leftward arrows 
indicate the increased decay rate of the evoked gamma oscillation at sites with 
increased response amplitude due to gain reduction by refractory periods.  From 
[10, Fig 6.86 p. 361.]  
 
If the four gains are set equal and changed concurrently, the symmetry of 
mutual excitation and mutual inhibition results in pole-zero cancellation. 
The root locus (phase = π radians in negative feedback) is shown for the 
upper half of the complex plane as the arc (“symmetry” in Fig. 7, right) 
rising with increasing negative feedback gain from the open loop pole 
(shown on Fig. 6 at a = -230/s) on the negative real axis and crossing the 
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imaginary axis near 300 rad/s (50 Hz). The centered small rectangle �  
identifies the average state or rest point that is observed for impulse 
responses at near-threshold impulse input by single-shock stimulation of 
the primary olfactory nerve [10]. 
 
This route of input to the bulb is called “orthodromic” because the 
direction of transmission conforms to the normal input of action 
potentials to the bulb from the sensory receptors in the nose. In contrast, 
electric excitation of the output path of the bulb, the lateral olfactory tract 
formed by axons of mitral cells, is called “antidromic”, because the 
evoked action potentials travel into the bulb abnormally, that is, in the 
opposite direction to normal propagation (Fig. 8).   
 
Mode 1e shows the increased stability imposed by the bulbar mechanism 
in response to irrelevant or noisy input. The upper line shows the limit 
imposed by the value of the feedback gain in the KIe population that 
gives a pole at the origin of the complex plane for unity positive feedback 
gain, kp = 1. That is, when the bombarding input to cortex abates, the 
cortex can settle toward its internal steady state amplitude of background 
activity governed by the non-zero attractor represented by the pole at the 
origin of the complex plane. Then the oscillatory pole tends toward a 
higher frequency and faster envelope of decay of the impulse response, 
but only to the limit of the diagonal line shown as the “upper limit” in the 
steady state. As with the pole at the origin, oscillator y impulse responses 
at the limit are not observable. 
 
The impulse responses of the olfactory system (the averaged evoked 
potentials AEP) for which the peak amplitudes do not exceed the 
amplitude range of the on-going background ECoG conform to additivity 
and proportionality on paired-shock testing, showing that there is a 
small-signal near-linear range in the dynamics of the major components 
of the central olfactory system. The arrow downward to the left in Fig. 7 
shows the reduction in frequency and increase in decay rate when all 
feedback gains are reduced equally (“symmetry”) by increased input 
intensity or by reduction of the background bias from KIe sets.  
 
This symmetric root locus under the condition of equality of excitatory 
and inhibitory positive feedback is rarely seen in experimental root loci 
derived from evoked potentials, because the mutual excitation (KIe) and 
mutual inhibition (KIi) are rarely equal. When mutual excitation 
predominates, the root locus is horizontal (Mode 1e). Stimulation of the 
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input tract to the bulb evokes potentials in which the decay rate is 
proportional to response amplitude over the spatial distribution of input 
but the frequency is constant (the horizontal root loci in Fig. 7, right). 
When mutual inhibition dominates, the root locus can approach vertical 
(Mode 1i. Fig. 8, right). Antidromic stimulation of the output tract of the 
bulb, the lateral olfactory tract, activates the inhibitory interneurons 
directly by dendrodendritic synapses, giving a strong inhibitory bias to 
the oscillations (Fig. 8, Mode 1i) that is not compensated by KIe input as 
it is in orthodromic input (Fig. 7, left), because the periglomerular cells 
are not activated by antidromic stimulation.  
 

 
 

Fig. 8. Left. Antidromic single-shocks to the lateral olfactory tract evoked 
impulse responses in the bulb, which bypassed the periglomerular neurons and 
the excitatory bias they contributed to the input. With increasing stimulus 
intensity the frequency decreased with little change in decay rate, giving a vertical 
root locus. Right. Root loci from solving ODE for impulse responses predicting 
frequencies and decay rates. The same Mode 1i root loci are derived from impulse 
responses obtained with fixed impulse intensity while reducing the background 
activity by administration of barbiturate anesthesia. That is, the frequency of 
oscillation is determined by the ratio of evoked activity to background activity, 
when the evoked potential exceeds the background. From [10, Fig 6.11, p. 374.].  
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Mode 1e and 1i root loci are seen only when the amplitude of the single-
shock evoked potentials exceeds the range of the background ECoG 
amplitudes. This is because the thresholds of the axons during recurrent 
inhibition limit the amplitude of the evoked activity that exceeds the 
spontaneous range. When neurons are inhibited below their thresholds, 
they cannot fire to signal the magnitude of inhibitory input. The 
thresholds block axonal output that signals excess dendritic inhibition; 
the block effectively reduces the feedback gain in the KII loop [10, Fig. 
5.28, p. 335]. In contrast, the refractory periods (not the thresholds) of 
the axons limit the upper range of background activity and the 
superimposed evoked potentials (Fig. 5, kn > 1).  
 
When the input intensity is fixed to give evoked potentials for which the 
peak-to-peak amplitudes do not exceed the range of background activity, 
the frequency and decay rate of successive averaged evoked potentials are 
high with low amplitude and high with high amplitude (downward-right 
arrow, Fig. 9). The variations provide evidence for spontaneous 
fluctuations in feedback gain and set point, owing to spontaneous 
fluctuations in the levels of the background activity. These relations differ 
markedly from those of Mode 1e and Mode 1i. Mode 2 root loci from 
solving the ODE to fit the data (Δ) cross the imaginary axis with 
increasing amplitude, which implies runaway excitation by positive 
feedback between amplitude and gain. However, the root loci turn back 
toward the imaginary axis and converge to a crossing point close to 250 
radians/s (40 Hz). That convergence to a complex conjugate pair of poles 
on the imaginary axis predicts the existence of a limit cycle attractor for 
the KII set in the middle of the gamma range. The state is predicted to be 
stable, because further increase in amplitude is prevented by decreased 
feedback gain. In piecewise linear analysis of observations based on time 
averages that flatten the background activity (AEP and PSTH) this result 
predicts bistability: convergence of cortex either to a point attractor or a 
limit cycle attractor.  
 
 
5. Definition of a cortical order parameter related to 
information content of cortical activity 
 
The carrier frequency is everywhere the same across the olfactory bulb 
and likewise across each sensory neocortex, but it tends to vary in time. 
Owing to this frequency modulation (FM) the study of spatial patterns is 
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optimally done using the instantaneous frequency derived from the 
Hilbert transform [3, 4, 29], which gives better temporal resolution of 
AM and PM patterns than does decomposition using the Fourier 
transform [3, 4]. The digitized values of 64 ECoG from an 8x8 array yield 
the conic PM pattern of phase modulation (PM) at the instantaneous 
frequency (Fig. 3, left), for which the isophase contours form equidistant 
circles around an apex (Fig. 3, right). This phenomenon is also found in 
all areas of sensory neocortex, which implies that communication within 
cortex is with a finite velocity across its surface that is imposed by the 
necessity for action potentials acting at synapses to provide for phase 
locking of oscillations at the time-varying carrier frequency. Any form of 
time averaging across multiple measurements of phase differences 
between two points must converge to zero phase lag [12] no matter how 
great the distance between the points.  

 
Fig. 9. Closed loop root loci in the upper half of the complex plane at p radians 
are revealed by the spontaneous variation of the oscillatory impulse responses in 
the small signal, near-linear range. The small triangles show the characteristic 
frequencies of the evoked potentials fitted with damped cosines. The arrow shows 
the direction of decreased decay rate and frequency with increased response 
amplitude (the reverse direction compared with Mode 1e in Fig. 7, right). From 
[10, Fig 6.21, p. 374.]  
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The analytic amplitude, Aj(t), at the j-th electrode of the 64 
electrodes in the array co-varies widely with time. The variation is 
reflected in the spatial average, A(t) (red curve in Fig. 10, A). When A(t) 
approaches zero, the phase becomes undefined. At each spatial location 
the rate of increase in phase (the instantaneous frequency) transits to a 
new value that is shared by waves in all other locations, independently of 
response amplitude. The spatially coherent oscillation re-synchronizes 
near a new average frequency, typically differing by ±10-20 Hz from the 
average frequency in the prior frame. During the transition the spatial 
standard deviation of phase differences, SDX(t), fluctuates around high 
values (blue curve in Fig. 10, A). There are two reasons. One reason is 
that at very low analytic amplitudes, the errors of measurement of phase 
are very large when the phase is indeterminate. The other reason is that 
the transition is not simultaneous but dispersed in accord with the phase 
cone but within the range ±π/4 (±45°), the half-power value. Therefore 
the peaks SDX(t) provide a marker in the ECoG for locating widely 
synchronized jumps signifying distributed state transitions in the cortex.  

 

 
Fig. 10, A. This is an example of ECoG from a human subject at rest, 

showing the background activity. When the spatial standard deviation of phase 
differences, SDX(t), falls to a low value, the mean analytic amplitude, A(t), 
increases to a maximum during the period of relatively constant frequency that 
follows a state transition [4]. B. This pattern is simulated by passing brown noise 
(1/f2) through a band pass filter in the gamma range. Mean analytic amplitude 
and spatial variance of analytic phase co-vary inversely [6]. 

 
This pattern of inverse relation between SDX(t) and A(t) occurs both 

in aroused subjects actively engaged in perception [3-5, 8-9, 20] and in 
subjects at rest (Fig. 10, A). The pattern is simulated in a simple way [6]. 
The transfer function in the positive feedback loop modeling the 
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dynamics of the KIe set can be approximated by a transcendental 
exponential term having the same form as a 1-D diffusion process. The 
autocorrelation, cross correlation and interval histograms conform to 
those of a Poisson process with refractory periods. The pulse trains of the 
component neurons can be modeled with random numbers. The sum of a 
large number of identical, independently distributed random numbers 
converges to a power density spectrum with 1/f2 slope in log-log 
coordinates [42]. When this brown noise is passed through a band pass 
filter in the gamma range, the amplitude and phase vary in the manner 
shown in Fig. 10, B. The cortex provides the pass band at the 
characteristic frequency the negative feedback relation between the 
pyramidal (or mitral) cells and the inhibitory interneurons (or internal 
granule cells) (Fig. 7, right). The result is seen in the fluctuations of the 
gamma band activity in the ECoG; the amplitude histogram is close to 
Gaussian; the envelope of the activity conforms to the Rayleigh 
distribution [10, p. 148, Fig. 3.13c]; and the power spectral density in log-
log coordinates has a slope near -2. The spikes in SDX(t) recur erratically 
in the theta range, as revealed by correlation of ECoG with SDX(t) in both 
the real ECoG [3-4, 11] and the simulation [6]. Therefore the spikes in 
SDX(t) in Fig. 10, A can be viewed as intrinsic to the cortical dynamics. 
The brown noise is generated by KIe dynamics (Figs. 4 and 6); the null 
spikes emerge when the noise is passed through the KII band pass filter 
(Fig. 4 and 7). The null spikes are not imposed by the sensory input; 
instead they reveal episodic intrinsic silencing of the background activity. 
That momentary silencing may enable perception for the following 
reason. The cortex passes undergoes a state transition only in the 
presence of suprathreshold sensory input. The threshold is materially 
reduced for stimuli for which a Hebbian assembly already exists with its 
attendant attractor and basin of attraction. The threshold may be still 
further reduced by the brief abatement in cortical background noise.  

 
The analytic amplitude, Aj(t), also varies with spatial recording 

location, giving the spatial AM pattern that is represented by a 64x1 
vector, A(t). The vector is normalized by dividing each value of Aj (t) by 
the mean amplitude, A(t). While the AM pattern at every digitizing step is 
accompanied by a PM pattern, only the patterns that last 3 to 5 cycles of 
the sustained mean frequency and its phase cone are readily identified, 
measured, and classified with respect to stimulus categories. The AM 
patterns with classification of greatest statistical significance are those at 
the peak of A(t), when the rate of increase in the analytic phase (the 
instantaneous frequency) is nearly constant and the spatial variance in 
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phase, SDX(t), is low. These are the AM patterns that are classifiable with 
respect to the CS given to subjects in whom the ECoG is being recorded 
(Fig. 2, right).  

 
The normalized vector, A(t), representing AM patterns is adopted as 

the order parameter for cortex, because it measures the kind and degree 
of structure in the cortical activity. However, for descriptive purposes a 
scalar index is needed to show relations of the order parameter to other 
variables, in particular to the ECoG amplitude. The index is derived as 
follows. The normalized A(t) specifies a point in 64-space that represents 
the AM pattern. Similar patterns form a cluster of points that manifest an 
attractor in cortical state space. Multiple clusters reveal an attractor 
landscape. The change from one basin of attraction to another across a 
boundary (separatrix) is shown by a trajectory of successive digitized 
points for A(t), as cortical state shifts from one cluster to another cluster. 
The absolute rate of change in the order parameter, De(t) = |A(t) – A(t-
1)|, is given by the Euclidean distance between successive points. De(t) 
corresponds to the absolute value of the numerical derivative of the order 
parameter. It has high values during state transitions and decreases to 
low values when a new AM pattern emerges with convergence to an 
attractor, followed by a major increase in A(t) (Fig. 11, A). Therefore De(t) 
varies inversely with the degree of stability of the pattern specified by the 
vectorial order parameter [3] The degree of order also varies in 
proportion to the rate of free energy dissipated in cortical activity, which 
is manifested in the square of the mean ECoG analytic amplitude, A2(t). 
The best available index for locating in time the classifiable AM patterns 
in the ECoG [5] is the ratio, He(t) = A2(t) / De(t). Atmanspacher and 
Scheingraber [43] define this quantity as the pragmatic information 
carried by the wave packet in the beta or gamma range. It is the ratio of 
the rate of dissipation of free energy to the rate of increase in the order 
parameter. He(t) also provides a unique scalar value to index each 
classifiable AM pattern as an inequivalent ground state [26].  

 
Desynchronization is commonly associated with low-voltage fast 

activity, while synchronization is associated with high-voltage slow 
activity. An increase in mean ECoG analytic amplitude might occur with 
more synchrony, more total dendritic current, or both. The two factors 
are distinguished in beta-gamma ECoG records recorded with a high-
density 8x8 array by calculating the temporal standard deviation, SDT(t), 
of the average waveform in a moving window twice the duration of the 
wavelength of the center frequency of the pass band and dividing it by 
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the average of the 64 SDT(t). When there is no synchrony, the ratio, Re(t) 
= SDT(t) / SDT(x), approaches 1/n.5, where n is the number of time steps 
in the window. Re(t) equals unity when there is complete synchrony 
(identical instantaneous frequency and phase), whether or not there are 
AM patterns. Re(t) is used to show that the major increases in A(t) during 
AM pattern formation are not attributable to increases in the level of 
synchrony (Fig. 11, B), which occur before amplitude increases.  

 
Fig. 11. A. The rate of change in the order parameter, De(t) (gre), falls to a 

low value well before a major increase in average analytic amplitude, A(t) (black). 
B. The index of synchrony, Re(t), (black), (shown here as its reciprocal, 1/Re(t)) 
rises to near unity before the AM patterns stabilize (low De(t), grey) and well 
before A(t) increases, showing that increased synchrony is not the basis for 
increased analytic amplitude in frames of ECoG. From [3].  

 
Every classifiable AM pattern has a phase cone. In the olfactory bulb 

there appears to be only one phase cone at a time for the duration of the 
gamma burst. When there is more than one distinguishable component 
of the time-varying carrier frequency, each peak frequency has its phase 
cone with the same location and sign of the apex and the same phase 
velocity. The dual phase cones manifest the same broad-spectrum event. 
In neocortex there are multiple overlapping phase cones at all times, 
giving the appearance of a pan of boiling water. The frequencies, signs 
and locations of the phase cones differ as much as they vary between 
successive events [4]. The distributions of the durations are power-law, 
and likewise of the diameters within the limits of measurement. The 
distributions of carrier frequencies and more generally of the power 
spectral densities in both time and space [4, 6, 30, 46] of neocortex are 
power-law. These multiple power-law distributions of the derived state 
variables suggest that neocortex is stabilized in a form of self-organized 
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criticality (SOC) as first described by Bak, Wiesenfeld and Tang [44] and 
in more detail by Jensen [45].  

 
The classic object of study of SOC is a sand pile fed from above as at 

the bottom of an hourglass. The steady drip of sand creates a conic pile 
that increases slope to a critical angle of repose that is held thereafter by 
repeated avalanches. Likewise a pan of water brought to a boil holds a 
constant temperature by forming bubbles of steam. An open system of 
interacting elements, whether grains of sand, water molecules or 
neurons, evolves to a stable steady state that is far from equilibrium. That 
global state is maintained at pseudo-equilibrium by repeated 
adjustments: avalanches of sand, bubbles of steam, or state transitions 
among groups of neurons. The records of the changes appear chaotic and 
give temporal and spatial spectra with 1/f α forms implying self-similarity 
across wide scales of time and space. Likewise the ECoG gives records 
that appear chaotic, with temporal and spatial power spectral densities 
that conform to 1/f α, where the exponent α has been calculated as 
ranging 1 < α < 3 [3-4, 6, 46-47]. In all three systems the appearance of 
“noise” is illusory. When viewed from the proper perspective, informative 
structures in the “noise” become clear. The critical parameter that is 
maintained by SOC in cortex is proposed to be the mean firing rate of the 
neurons comprising the interactive populations in cortex, which is 
regulated homeostatically everywhere in cortex by the refractory periods. 
The mechanism is represented by a point attractor expressed in the pole 
at the origin of the complex plane (Figs. 6-9, right). Like avalanches the 
times and locations of cones are predictable not locally but only in the 
average. They overlap so that any neuron may participate in multiple 
cones simultaneously. The sizes and durations of cones give histograms 
that are power-law. The smallest and briefest cones are the most 
numerous. Their means and SD change in proportion to the size of the 
measuring windows [6, 30]. The distributions show that the neural 
patterns may be self-similar across multiple scales [39, 47-50]. These 
functional similarities indicate that neocortical dynamics is scale-free 
[51-53]: the largest events are in the tail of a continuous distribution and 
share the same mechanism of onset and the same brief transit time of 
onset despite their large size.  
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6. A proposed phase diagram to represent the dynamics of 
cerebral cortex 
 
The classic phase diagram of a substance such as water at 
thermodynamic equilibrium (Fig. 12, A from Blauch [54]) serves as a 
platform from which to construct a diagram for cortex as a system 
operating far from equilibrium, yet maintaining a conditionally stable 
steady state (Fig. 12, B). The classic system is static and closed. The level 
of energy displayed on the abscissa is indexed by temperature. The 
degree of order displayed on the ordinate is measured by pressure, 
volume or entropy. Maximum order occurs at minimum energy. Three 
phases are separated by phase boundaries that meet at a triple point. 
However, the phase boundary between liquid and gas ends at a critical 
point, beyond which the phase of constituents is undefined.  
 

Brains are open, dynamic systems that continually dissipate free 
energy [26, 55] in burning glucose; brains constitute 5% of body mass yet 
consume 20% of basal metabolic rate. Two new state variables are 
required: the rate of energy dissipation (power) on the abscissa, and the 
rate of increase in information (negentropy) on the abscissa, indexing the 
order emergent in dissipative structures [56]. In the dynamic display the 
equilibrium at criticality appears as a point at the origin of the new state 
variables. Equilibrium is approached in brain death and in the non-
interactive state imposed by deep anesthesia (Fig. 4, KO). With recovery 
from anesthesia the degree of order and the rate of energy increase 
together (the diagonal line, Fig. 12, B).  

 
Brain temperature is unsuitable as an index of power, because birds 

and mammals use homeostatic feedback to hold brain temperatures 
within a narrow range. A useful index of power is the mean square 
analytic amplitude, A2(t), because ECoG amplitude depends on current 
density across the relatively fixed extracellular specific resistance of 
cortical tissue. The square of current or voltage is proportional to the 
power expended by neurons generating the dendritic potentials. This 
dissipation is the basis for imaging brain activity by measuring cerebral 
blood flow using fMRI, SPECT, PET, etc., because 95% of brain energy is 
consumed by oxidative metabolism in dendrites, only 5% in axons.   

 
The degree of order on the ordinate is indexed by the scalar ratio 

specifying pragmatic information, He(t). This state variable makes 
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explicit the premise that order in dissipative structures increases with 
increasing power [56]. Cortex operates as an open system far from 
equilibrium (Fig. 12, B), yet it is self-stabilized while transiting through a 
collection of states by processes variously denoted as orbiting in 
metastability [21, 22], chaotic itinerancy [23]; transient coherence in 
unitarily inequivalent ground states [26]; and bifurcations [57] among 
hierarchical levels by neuropercolation [Kozma Chapter] through an 
extension of random graph theory [22].  

 

 
 
Fig. 12. A. Conventional phase diagram at equilibrium. From [54].  
B. By analogy to physical matter, a phase diagram is proposed for cortical 

dynamics. Far from equilibrium the levels of order and power are conceived to 
increase together with increased arousal (Fig. 1). The critical point and imaginary 
axis are taken from the complex plane (Fig. 9). Arousal from deep anesthesia (the 
“open loop” state with flat ECoG, KO in Fig. 4) leads to stabilization at a pseudo-
equilibrium that is maintained by the refractory periods of the excitatory 
interactions among pyramidal (mitral) cells. Transformation of A to B is by 
translating the origin in B to the critical point shown in A and constructing two 
new orthogonal dimensions for change: the rate of pragmatic information 
increase (negentropy) as a scalar index of order on the ordinate and the rate of 
dissipation of free energy (power) on the abscissa.  

 
In all formulations the magnitude of the background activity at 

which the cortex is stabilized can vary; it generally co-varies with the 
level of arousal (Fig. 1). In cortex the stability is maintained by the 
refractory periods, so that no matter how great the increase in arousal, 
the output of the KIe populations is self-stabilized at unity feedback gain. 
The pole at the origin of the complex plane (Δ at the origin in Figs. 6-9) 
corresponds to the critical point (Δ) on the diagonally upward line (Fig. 
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12, B), so that the metastability of cortex can be described as an instance 
of self-organized criticality (SOC). Thereby the steady state can be 
described as a phase in a system at pseudo-equilibrium, and the state 
transition can be labeled as a phase transition. The demarcation by the 
imaginary axis that is accessible to piecewise linear analysis between 
stable and unstable states (Figs. 6-9) in the upper half of the complex 
plane is seen to correspond to a phase boundary (Fig. 12, B) between 
bistable receiving and transmitting states (Fig. 13). A second phase 
boundary that is inaccessible to linear analysis separates a phase domain 
of self-sustained complex partial seizure [27].  

 
These properties lead to a view of perception as a cyclical process 

(ellipse in Fig. 13). The cycle begins with cortex in a receiving state with 
an attractor landscape already established by learning from input and 
selected by the limbic system in preafference [29]. The pole at the origin 
representing the stable, non-zero point attractor of the KIe set (Δ at the 
origin in Figs. 6-9, right) specifies the location of the critical point (upper 
Δ) maintained by SOC, which is located on the 45° line that represents 
increasing order with increasing power of neural activity in accord with 
Prigogine’s [56] “order from disorder” in formation of “dissipative 
structures” and Haken’s [57] “slaving principle”. Three phases are 
conceived in a simplified approach: receiving, transmitting, and seizure. 
The set point (Fig. 13, lower Δ) corresponding to the center small 
rectangle � in Figs. 7-9 is postulated not to lie on the upwardly diagonal 
line but below the line. It is offset in sensory cortices by the background 
input from sensory receptors, and in other cortices by background input 
from other parts of the brain. The displacement (small downward arrow 
between triangles Δ —› Δ in Fig. 13) reflects gain reduction below unity in 
for the smallest observable impulse responses (Fig. 6, A). The 
displacement represents decreased order and increased power.  
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Fig. 13. A phase diagram of neocortical dynamics is constructed in the 
coordinates of the degree of order given by the rate of change in the order 
parameter, He(t), as the dependent variable and the average analytic power, A2(t), 
as the independent variable. The central rectangle shows the linearized subspace 
of the complex plane in Figs. 6-9. The ellipse represents the action-perception 
cycle. The thickness of the ellipse represents beta or gamma analytic power.  

 
The root locus in Mode 1e is represented by the nearly horizontal 

rightward arrow from the set point (lower Δ) indicating increased power 
and small increase in order with orthodromic evoked potentials above 
the range of background activity. The downward orange arrow indicates 
the root locus in Mode 1i, showing the increased power and decreased 
order accompanying impulse responses involving strong inhibition. The 
leftward magenta arrow indicates the root locus in Mode 2, which crosses 
the phase boundary (imaginary axis) in a phase transition. Mode 2 
appears diametrically opposed to Mode 1e in showing a decrease in 
power with a small decrease in order, tending toward instability.  
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The most remarkable feature of the diagram in Fig. 13 is the 
description of the phase transition in an act of perception as beginning 
with decreased power and decreased order. This feature is 
counterintuitive, because perception is usually conceived as resulting 
from the impact of a sensory volley that increases power and imposes 
increased order by the injection of information from a stimulus. Certainly 
that takes place, but the phase diagram adds a different dimension to the 
story, as follows. The event that initiates a phase transition is an abrupt 
decrease in the analytic power of the background activity to near zero, as 
is shown to occur in Fig. 10, A, and as is simulated in B. This reduction 
induces a brief state of indeterminacy, in which the amplitude of the 
ECoG is near zero and phase of the ECoG is undefined. If a stimulus-
induced volley arrives at or just before this state, then the cortex in 
accord with Mode 2 can be driven by the input across the phase 
boundary. The Mode 2 root loci in Fig. 9 show that exogenous input (as 
distinct from endogenous activity) increase amplitude and also instability 
by bringing the cortex closer and across the imaginary axis. The response 
amplitude depends not on the input amplitude but on the intrinsic state 
of the cortex, specifically the degree of reduction in the power and order 
of the background brown noise.  

 
If the phase transition occurs, it re-sets the carrier frequency of 

oscillation through a discontinuity in analytic phase. Then the oscillation 
converges to a shared frequency (Fig. 9) as shown by the reduction in 
SDX(t) in Fig. 10, A. Thereafter in succession follow re-synchronization as 
shown by increased Re(t) in Fig. 11. B; increased order as a stable pattern 
emerges with decreased De(t) in Fig. 11, A; and lastly increased mean 
power A2(t) in Fig. 11, A. After power has peaked, the cortex returns to its 
receiving state by a second phase transition without a discontinuity in the 
oscillatory phase. According to this hypothesis the cycle for the 
opportunity to undergo a phase transition repeats aperiodically at an 
intrinsic rate in the theta range. The actualization of a phase transition 
requires the presence of a surge of input to the cortex. In the 
experimental conditioning paradigm used in this study, the input surge is 
a sensory volley brought to the cortex by a behavioral act of observation, 
so the gamma ellipse in Fig. 13 can properly be called a representation of 
the neural trajectory of an action-perception cycle [1, 12, 53]. Conceivably 
the input surge can also be provided in sensory cortices by corticocortical 
transmission from the limbic system. Such a phase transition may 
underlie the formation of beta wave packets in a “virtual” action-
perception cycle.  
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7. Conclusions and Summary 
 

The significance of the reduction in power prior to initiation of a 
phase transition can be seen in the fact that an expected conditioned 
stimulus typically is a very weak signal that is embedded in contextual 
noise. The afferent volley activates the sensory cortex and actualizes the 
attractor landscape that expresses the several possible categories of CS 
that are expected during an intentional act of observation. A Hebbian 
nerve cell assembly that was formed in prior learning governs each 
attractor. The relatively few action potentials sent by the relevant 
receptors can ignite one of the cell assemblies, which can direct the 
cortex into the corresponding basin of attraction. That moment of 
selection can be conceived as done optimally when the background 
activity is quenched, and the output of a relevant Hebbian assembly has 
maximal signal:noise ratio in selecting a basin to which to guide the 
entire sensory cortex. When the background power then increases, it is 
imprinted with the AM pattern provided by an attractor in the landscape. 
The power is not provided by the sensory input; it is provided by the 
intrinsic mutual excitation. The null spike may be likened to the eye of a 
hurricane — a transient interlude of silence that opens the possibility for 
a change in direction of movement. The next null spike quenches the 
cortical activity and releases the dynamics from the attractor as the AM 
pattern disappears.  

 
The null spike in the band pass filtered brown noise activity is 

conceived as a shutter [58] that blanks the intrinsic background. At very 
low analytic amplitude when the analytic phase is undefined, it may be 
that the system trajectory approaches a singularity that enhances the 
likelihood for a small extrinsic sensory input to re-set the background 
activity in a new frame. The null spike does not qualify as a gate, because 
the sensory input is not blocked or withheld, and the AM pattern in the 
following frame, if any, is formed by reorganization of existing activity 
through attractor selection, not by the driving of cortical activity by input 
as in the “information processing” model. The null spike is not a scanner 
[59], because the selection of a basin of attraction is by competition 
among cell assemblies in state space and not by a search for a module in 
cortex. It is not really a clock, because the recurrence of null spikes is 
aperiodic in a limited range, and the formation of an AM pattern requires 
an exogenous factor, the input as from a sniff or a saccade [60]. Gating, 
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scanning, and clock timing [61] are better conceived as mesoscopic 
thalamocortical operations [Bressler Chapter], while the precise timing 
of the phase transition is performed within the neural populations that 
are to construct the wave packet carrying an AM pattern. Exploration will 
require development of a mathematical foundation for the null spike, 
which does not currently exist. Two promising bases for research are 
foreseen in random graph theory [22, 62] and quantum field theory [26, 
55]. They are approaches widely used to describe processes by which 
microscopic events might be up-scaled into macroscopic patterns in 
complex systems.  

 
Fig. 13 offers the basis for more complicated graph in which to 

synthesize and display further data and concepts derived from studies of 
the nonlinear dynamics of cortex. This simple form can be elaborated to 
include additional data from drug studies. For example, induction of 
anesthesia by barbiturates is by enhancement of inhibition that is 
replicated by the root locus in Mode 1i. The same root loci are obtained 
by reducing the background activity with barbiturate or by increasing the 
impulse intensity (Fig. 8). At the extreme level of flattening the ECoG, 
the gain kp = 0, and a point attractor with zero amplitude is revealed [18] 
giving the open loop impulse response (Fig. 4, KO). An instability is 
manifested in barbiturate spindles: brief bursts of oscillation in the theta 
range [10]. Stages of sleep might be represented by yet other phases.  

 
Brief tetanization of the lateral olfactory tract at supra-maximal 

intensity can induce a complex partial seizure with absence and 3/s 
spike-and-wave [27]. This autonomous pattern of activity implies the 
existence of the lower phase boundary that separates the receiving and 
transmitting states from an epileptic domain with very high power and 
minimal order, which is accessed paradoxically by raising the activity of 
mutually inhibitory neurons to high intensity. Remarkably the seizure 
spike repetition rate is also in the same theta range as the null spike. The 
seizure spike-and-wave would form a much larger ellipse (not shown).  

 
The normal ellipse might be regarded as a 2-D projection of a torus, 

which manifests a quasi-periodic attractor, in which the low frequency of 
burst repetition in the theta range is represented by the diameter of the 
torus, and the high frequency of the burst carrier wave in the beta or 
gamma range is represented by the thickness of the torus. The torus 
might in turn be regarded as a projection of a helix extending into the 
time domain in 3-D. Multiple ellipses might serve to represent high-
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dimensional chaotic attractor landscapes [18], dynamic memory systems 
in neuropercolation theory [322], and multiple ground states modeled by 
dissipative quantum field theory [27, 55]. More immediately, a solid 
mathematical foundation is needed beyond ODE, in order to derive and 
describe more precisely the forms of the neural action-perception cycles 
and the phase boundaries that they cross, for which ODE are not fully 
suitable.  
 
In summary, the olfactory bulb, nucleus and cortex constitute a semi-
autonomous system in each cerebral hemisphere that receives odorant 
information, categorizes an odor percept by generalization and 
abstraction, and transmits the percept broadly through the forebrain. 
The form of the percept is a frame constructed and carried by a wave 
packet with an aperiodic “chaotic” carrier oscillation in the gamma range. 
The content is expressed in a spatial pattern of amplitude modulation 
(AM) of the carrier wave that is determined by modified synapses among 
bulbar mitral cells that form Hebbian nerve cell assemblies in 
reinforcement learning. Each cell assembly for a discriminated odorant 
guides the bulb to an AM pattern constructed by a “chaotic” attractor. 
The collection of learned categories of odors is retained in the form of an 
attractor landscape. Each attractor is surrounded by a basin of attraction; 
the processes of generalization and abstraction occur when the trajectory 
converges to the attractor, regardless of where in a basin an afferent 
volley guides the trajectory. Three requirements met by the olfactory 
system in percept formation are a state transition from a receiving state 
to a transmitting state, another transition to return, and a mechanism for 
repeated sampling of the olfactory environment by the limbic system: a 
shutter.  
 

Dynamics in the visual, auditory and somatic perceptual systems 
share these properties. In this Chapter evidence from ECoG  of allocortex 
and neocortex serves to describe the neural mechanisms that generate 
and stabilize cortical carrier waves; that enable the state transitions; and 
that provide a shutter to terminate old frames and initiate new ones in 
cinematographic sequences in every sensory system. It is postulated that 
a percept forms a wave packet only when the endogenous background 
activity briefly abates in a “null spike”, which provides the high 
signal:noise ratio that a burst of cortical activity that is driven by input 
relayed from sensory receptors needs to select and initiate a new frame. 
The aperiodic sequence of null spikes provides the shutter that is a 
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necessary though not sufficient condition for the cinematographic 
process of perception.  
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